login
A180942
Odd composite numbers m for which A000111(m) == (-1)^( (m-1)/2 ) (mod m).
2
91, 561, 781, 1105, 1661, 1729, 2465, 2737, 2821, 6601, 8911, 10585, 15841, 29341, 30433, 41041, 46657, 52633, 62745, 63973, 75361, 90241, 101101, 115921, 126217, 136371, 136741, 137149, 162401, 172081, 176565, 188461, 251251, 252601, 278545, 294409, 314821, 334153
OFFSET
1,1
COMMENTS
For any odd prime p, A000111(p) == (-1)^((p-1)/2) mod p, see A180418, so these cases are not considered further and left out of the sequence by definition.
Might be called "Zig-zag pseudoprimes."
It seems that every Carmichael number (A002997) <= 512461 is in the sequence. - D. S. McNeil, Sep 01 2010
MATHEMATICA
fQ[n_] := ! PrimeQ@n && Mod[ (-1)^((n - 1)/2)*2^(n + 1)*(2^(n + 1) - 1)*BernoulliB[n + 1]/(n + 1), n] == Mod[(-1)^((n - 1)/2), n]; k = 3; lst = {}; While[k < 50000, If[ fQ@k, AppendTo[lst, k]; Print@k]; k += 2]; lst (* Robert G. Wilson v, Sep 29 2010 *)
PROG
(Python)
from itertools import count, islice, accumulate
from sympy import isprime
def A180942_gen(): # generator of terms
blist = (0, 1)
for n in count(2):
blist = tuple(accumulate(reversed(blist), initial=0))
if n & 1 and (blist[-1] + (1 if (n-1)//2 & 1 else -1)) % n == 0 and not isprime(n):
yield n
A180942_list = list(islice(A180942_gen(), 5)) # Chai Wah Wu, Jun 09-11 2022
CROSSREFS
Cf. A000111.
Sequence in context: A234124 A373526 A373521 * A211447 A188360 A165220
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Sep 27 2010
EXTENSIONS
Extended to a(13) by D. S. McNeil, Sep 01 2010
Comments rephrased by R. J. Mathar, Sep 29 2010
a(14)-a(17) from Robert G. Wilson v, Sep 29 2010
a(18)-a(38) from Amiram Eldar, Dec 28 2019
STATUS
approved