login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373521
Expansion of e.g.f. exp(x/(1 - x^4)^(3/4)).
3
1, 1, 1, 1, 1, 91, 541, 1891, 5041, 249481, 3424681, 24365881, 119821681, 4208219731, 96849813061, 1133147785771, 8728726799521, 251218306095121, 8116398738418321, 138787857114672241, 1523943014238675361, 39648007379230971211, 1599866285860593980461
OFFSET
0,6
FORMULA
a(n) = n! * Sum_{k=0..floor(n/4)} binomial(3*n/4-2*k-1,k)/(n-4*k)!.
a(n) == 1 mod 90.
PROG
(PARI) a(n) = n!*sum(k=0, n\4, binomial(3*n/4-2*k-1, k)/(n-4*k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 08 2024
STATUS
approved