login
A165220
Numbers n such that 8*n+1 is a cube.
1
0, 91, 614, 1953, 4492, 8615, 14706, 23149, 34328, 48627, 66430, 88121, 114084, 144703, 180362, 221445, 268336, 321419, 381078, 447697, 521660, 603351, 693154, 791453, 898632, 1015075, 1141166, 1277289, 1423828, 1581167, 1749690, 1929781
OFFSET
0,2
COMMENTS
For every even n, n^4+(n/2)^3 is a cube.
In effect, a(n) = n*(24*n+3+64*n^2) and 8*a(n)+1 = (8*n+1)^3. [R. J. Mathar, Oct 18 2010]
FORMULA
G.f.: x*(91+250*x+43*x^2)/(1-x)^4. [Colin Barker, Jun 15 2012]
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {0, 91, 614, 1953}, 100] (* Vincenzo Librandi, Apr 06 2013 *)
PROG
(Magma) I:=[0, 91, 614, 1953]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 06 2013
CROSSREFS
Cf. A017077.
Sequence in context: A180942 A211447 A188360 * A020218 A217841 A338795
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 08 2009
EXTENSIONS
Typo corrected by Zak Seidov, Sep 14 2009
STATUS
approved