login
A165219
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.
0
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467165, 3874204080, 34867833120, 313810465680, 2824293899520, 25418642471280, 228767758621920, 2058909615020880, 18530184622000320, 166771644379316460
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(36*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t
+ 1)
CROSSREFS
Sequence in context: A163954 A164548 A164779 * A165788 A166368 A166543
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved