login
A165216
Number of reduced words of length n in Coxeter group on 9 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.
0
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994908, 1207958976, 9663669540, 77309338176, 618474560256, 4947795320832, 39582353276928, 316658751897600, 2533269420638208, 20266150608766188, 162129166819422768
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003951, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(28*t^9 - 7*t^8 - 7*t^7 - 7*t^6 - 7*t^5 - 7*t^4 - 7*t^3 - 7*t^2 - 7*t
+ 1)
MATHEMATICA
With[{num=Total[2t^Range[8]]+t^9+1, den=Total[-7 t^Range[8]]+ 28t^9+1}, CoefficientList[Series[num/den, {t, 0, 30}], t]] (* Harvey P. Dale, Oct 02 2011 *)
CROSSREFS
Sequence in context: A163953 A164375 A164777 * A165787 A166367 A166541
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved