login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166543
Number of reduced words of length n in Coxeter group on 10 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890, 34867844010, 313810596045, 2824295364000, 25418658272400, 228767924419200, 2058911319481200, 18530201872706400, 166771816830738000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003952, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(36*t^12 - 8*t^11 - 8*t^10 - 8*t^9 - 8*t^8 - 8*t^7 - 8*t^6 - 8*t^5 - 8*t^4 - 8*t^3 - 8*t^2 - 8*t + 1).
From G. C. Greubel, Aug 23 2024: (Start)
a(n) = 8*Sum_{j=1..11} a(n-j) - 36*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 9*x + 44*x^12 - 36*x^13). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^12)/(1-9*t+44*t^12-36*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 16 2016; Aug 23 2024 *)
coxG[{12, 36, -8, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 23 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)*(1-x^12)/(1-9*x+44*x^12-36*x^13) )); // G. C. Greubel, Aug 23 2024
(SageMath)
def A166543_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-9*x+44*x^12-36*x^13) ).list()
A166543_list(30) # G. C. Greubel, Aug 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved