login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180943
Odd composite numbers m for which 12*|A000367((m+1)/2)|==(-1)^{(m-1)/ 2}* A002445((m+1)/2) (mod m).
1
33, 169, 481, 561, 793, 805, 949, 1105, 1261, 1417, 1645, 1729, 2041, 2353, 2465, 2509, 2821, 2977, 3133, 3421, 3445, 3601, 4069, 4123, 4381, 4537, 4849, 5161, 5317, 5473, 5629, 5941, 6061, 6205, 6601, 7033, 7093, 7189, 7501, 7813, 7885, 7969, 8113
OFFSET
1,1
COMMENTS
These are pseudoprimes in the sense that the congruence of the definition is valid if any odd prime is substituted for m.
Entries of the form m = 4*k+3 are apparently rare: 4123, 8911, ...
Computed to 50 terms by D. S. McNeil, Sep 05 2010.
LINKS
V. Shevelev, B-pseudoprimes, seqfan list, Sep 04 2010
MAPLE
A000367 := proc(n) numer(bernoulli(2*n)) ; end proc:
A002445 := proc(n) denom(bernoulli(2*n)) ; end proc:
isA180943 := proc(m) if type(m, 'odd') and not isprime(m) then 12*abs(A000367((m+1)/2)) mod m = (-1)^((m-1)/2)*A002445((m+1)/2) mod m ; else false; end if; end proc:
A180943 := proc(n) option remember; if n = 1 then 33; else for a from procname(n-1)+2 by 2 do if isA180943(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Oct 24 2010
MATHEMATICA
nb[n_] := Numerator[BernoulliB[2n]];
db[n_] := Denominator[BernoulliB[2n]];
okQ[m_] := CompositeQ[m] && Mod[12*Abs[nb[(m+1)/2]], m] == Mod[(-1)^((m-1)/2)*db[(m+1)/2], m];
Select[Range[33, 9999, 2], okQ] (* Jean-François Alcover, Feb 28 2024 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Vladimir Shevelev, Sep 27 2010
EXTENSIONS
Comments rephrased and program added by R. J. Mathar, Oct 24 2010
Typo in data fixed by Jean-François Alcover, Feb 28 2024
STATUS
approved