OFFSET
1,1
COMMENTS
These are pseudoprimes in the sense that the congruence of the definition is valid if any odd prime is substituted for m.
Entries of the form m = 4*k+3 are apparently rare: 4123, 8911, ...
Computed to 50 terms by D. S. McNeil, Sep 05 2010.
LINKS
V. Shevelev, B-pseudoprimes, seqfan list, Sep 04 2010
Vladimir Shevelev, The number of permutations with prescribed up-down structure as a function of two variables, INTEGERS, 12 (2012), #A1. [N. J. A. Sloane, Feb 07 2013]
MAPLE
A000367 := proc(n) numer(bernoulli(2*n)) ; end proc:
A002445 := proc(n) denom(bernoulli(2*n)) ; end proc:
isA180943 := proc(m) if type(m, 'odd') and not isprime(m) then 12*abs(A000367((m+1)/2)) mod m = (-1)^((m-1)/2)*A002445((m+1)/2) mod m ; else false; end if; end proc:
A180943 := proc(n) option remember; if n = 1 then 33; else for a from procname(n-1)+2 by 2 do if isA180943(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Oct 24 2010
MATHEMATICA
nb[n_] := Numerator[BernoulliB[2n]];
db[n_] := Denominator[BernoulliB[2n]];
okQ[m_] := CompositeQ[m] && Mod[12*Abs[nb[(m+1)/2]], m] == Mod[(-1)^((m-1)/2)*db[(m+1)/2], m];
Select[Range[33, 9999, 2], okQ] (* Jean-François Alcover, Feb 28 2024 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Vladimir Shevelev, Sep 27 2010
EXTENSIONS
Comments rephrased and program added by R. J. Mathar, Oct 24 2010
Typo in data fixed by Jean-François Alcover, Feb 28 2024
STATUS
approved