login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A179814
Values y for record minima of the positive distance d between the fifteenth power of a positive integer x and the square of an integer y such that d = x^15 - y^2 (x <> k^2 and y <> k^15).
3
181, 3787, 174692, 685700, 2178889, 5931641, 31622776, 64631634, 1691869691, 2597429617, 16328969210, 22469029417, 54353589638, 380636413501, 2506650894908, 11290681881873, 12924394402851, 127673846293724
OFFSET
1,1
COMMENTS
Distance d is equal to 0 when x = k^2 and y = k^15.
For d values see A179812.
For x values see A179813.
Conjecture: For any positive number x >= A179813(n), the distance d between the fifteenth power of x and the square of any y (such that x <> k^2 and y <> k^15) can't be less than A179812(n).
MATHEMATICA
d = 15; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jul 28 2010
STATUS
approved