login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A179798 Records of minima of positive distance d between an 11th power of positive integer x and a square of integer y such d = x^13 - y^2 (x<>k^2 and y<>k^13) 6
92, 1679, 39281, 89927, 296863, 1530322, 12056004, 55972895, 67903894, 102383343, 641211875, 5148097536, 13764973788, 19839459725, 87957606400, 113794567580, 126889914716, 146745583311, 880304597278, 1154049177924 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Distance d is equal 0 when x = k^2 and y = k^13.

For x values see A179799.

For x values see A179800.

Conjecture (*Artur Jasinski*):

For any positive number x >= A179799(n) distance d between eleventh power of x

and square of any y (such that x<>k^2 and y<>k^13) can't be less than A179798(n).

LINKS

Table of n, a(n) for n=1..20.

MATHEMATICA

d = 13; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd (*Artur Jasinski*)

CROSSREFS

Cf. A179107, A179108, A179109, A179386, A179387, A179388, A179407, A179408, A179784, A179785, A179786, A179790, A179791, A179792, A179793, A179794, A179795, A179798, A179799, A179800.

Sequence in context: A251934 A064203 A265968 * A232795 A269439 A269623

Adjacent sequences:  A179795 A179796 A179797 * A179799 A179800 A179801

KEYWORD

nonn

AUTHOR

Artur Jasinski, Jul 27 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 14 06:54 EDT 2022. Contains 356110 sequences. (Running on oeis4.)