login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179800
Values y for record minima of the positive distance d between the thirteenth power of a positive integer x and the square of an integer y such that d = x^13 - y^2 (x <> k^2 and y <> k^13).
6
90, 1262, 34938, 114283, 741455, 5875603, 17403307, 28172943, 709955183, 936209559, 10875326100, 25905378592, 35572991418, 55703353220, 110485434560, 182204642678, 447245502234, 984322154617, 2160608565081, 3477146726351
OFFSET
1,1
COMMENTS
Distance d is equal to 0 when x = k^2 and y = k^13.
For d values see A179798.
For x values see A179799.
Conjecture: For any positive number x >= A179799(n), the distance d between the 13th power of x and the square of any y (such that x <> k^2 and y <> k^13) can't be less than A179798(n).
MATHEMATICA
d = 13; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jul 27 2010
STATUS
approved