login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133350
Dimensions of certain Lie algebra (see reference for precise definition).
1
1, 90, 1274, 8568, 38115, 130130, 369460, 915552, 2043621, 4198810, 8065134, 14651000, 25393095, 42280434, 68000360, 106108288, 161222985, 239249178, 347629282, 495626040, 694637867, 958548690, 1304114076, 1751385440, 2324174125, 3050557146, 3963426390
OFFSET
0,2
LINKS
J. M. Landsberg and L. Manivel, The sextonions and E7 1/2, Adv. Math. 201 (2006), pp. 143-179. [Th. 7.2(iii), case a = 1]
FORMULA
Empirical g.f.: (14*x^5+273*x^4+840*x^3+582*x^2+82*x+1) / (x-1)^8. - Colin Barker, Jul 27 2013
MAPLE
b:=binomial; t72c:= proc(a, k) ((4*k+3*a+2)/((3*a+2)*(k+1))) * b(k+a, k)*b(k+a+1, k)*b(k+3*a/2-1, k)*b(k+3*a/2, k)*b(2*k+2*a+1, 2*k)/ (b(k+a/2-1, k)*b(k+a/2, k)*b(2*k+a, 2*k)); end; [seq(t72c(1, k), k=0..40)];
MATHEMATICA
t72c[a_, k_] := (4k+3a+2) / ((k+1)(3a+2)) Binomial[k+a, k] Binomial[k+a+1, k] Binomial[k+3/2a-1, k] Binomial[k+3/2a, k] Binomial[2k+2a+1, 2k] / (Binomial[k+a/2-1, k] Binomial[k+a/2, k] Binomial[2k+a, 2k]);
Array[t72c[1, #]&, 30, 0] (* Paolo Xausa, Jan 09 2024 *)
CROSSREFS
Sequence in context: A213455 A155016 A179800 * A279438 A250869 A234983
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 20 2007
STATUS
approved