login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dimensions of certain Lie algebra (see reference for precise definition).
1

%I #19 Jan 09 2024 08:45:00

%S 1,90,1274,8568,38115,130130,369460,915552,2043621,4198810,8065134,

%T 14651000,25393095,42280434,68000360,106108288,161222985,239249178,

%U 347629282,495626040,694637867,958548690,1304114076,1751385440,2324174125,3050557146,3963426390

%N Dimensions of certain Lie algebra (see reference for precise definition).

%H Paolo Xausa, <a href="/A133350/b133350.txt">Table of n, a(n) for n = 0..10000</a>

%H J. M. Landsberg and L. Manivel, <a href="https://doi.org/10.1016/j.aim.2005.02.001">The sextonions and E7 1/2</a>, Adv. Math. 201 (2006), pp. 143-179. [Th. 7.2(iii), case a = 1]

%F Empirical g.f.: (14*x^5+273*x^4+840*x^3+582*x^2+82*x+1) / (x-1)^8. - _Colin Barker_, Jul 27 2013

%p b:=binomial; t72c:= proc(a,k) ((4*k+3*a+2)/((3*a+2)*(k+1))) * b(k+a,k)*b(k+a+1,k)*b(k+3*a/2-1,k)*b(k+3*a/2,k)*b(2*k+2*a+1,2*k)/ (b(k+a/2-1,k)*b(k+a/2,k)*b(2*k+a,2*k)); end; [seq(t72c(1,k),k=0..40)];

%t t72c[a_,k_] := (4k+3a+2) / ((k+1)(3a+2)) Binomial[k+a,k] Binomial[k+a+1,k] Binomial[k+3/2a-1,k] Binomial[k+3/2a,k] Binomial[2k+2a+1,2k] / (Binomial[k+a/2-1,k] Binomial[k+a/2,k] Binomial[2k+a,2k]);

%t Array[t72c[1,#]&,30,0] (* _Paolo Xausa_, Jan 09 2024 *)

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Oct 20 2007