login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A179795
Values y for records of the minima of the positive distance d between the eleventh power of a positive integer x and the square of an integer y such that d = x^11 - y^2 (x <> k^2 and y <> k^11).
12
45, 420, 19047, 44467, 92681, 316227, 2012353, 8016758, 14310835, 60583368, 91068707, 189812531, 488438379, 2741690265, 6023263700, 23751934582, 771834189385, 1734606819630, 8034176335637, 11511075516802, 22632960587688
OFFSET
1,1
COMMENTS
Distance d is equal to 0 when x = k^2 and y = k^11.
For x values see A179794.
For x values see A179795.
Conjecture (Artur Jasinski):
For any positive number x >= A179794(n), the distance d between the eleventh power of x and the square of any y (such that x <> k^2 and y <> k^11) can't be less than A179793(n).
MATHEMATICA
d = 11; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jul 27 2010
STATUS
approved