login
Values y for records of the minima of the positive distance d between the eleventh power of a positive integer x and the square of an integer y such that d = x^11 - y^2 (x <> k^2 and y <> k^11).
12

%I #9 Sep 08 2023 22:39:35

%S 45,420,19047,44467,92681,316227,2012353,8016758,14310835,60583368,

%T 91068707,189812531,488438379,2741690265,6023263700,23751934582,

%U 771834189385,1734606819630,8034176335637,11511075516802,22632960587688

%N Values y for records of the minima of the positive distance d between the eleventh power of a positive integer x and the square of an integer y such that d = x^11 - y^2 (x <> k^2 and y <> k^11).

%C Distance d is equal to 0 when x = k^2 and y = k^11.

%C For x values see A179794.

%C For x values see A179795.

%C Conjecture (_Artur Jasinski_):

%C For any positive number x >= A179794(n), the distance d between the eleventh power of x and the square of any y (such that x <> k^2 and y <> k^11) can't be less than A179793(n).

%t d = 11; max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^d)^(1/2)]; k = n^d - m^2; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 10000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; yy

%Y Cf. A179107, A179108, A179109, A179386, A179387, A179388, A179407, A179408, A179784, A179785, A179786, A179790, A179791, A179792, A179793, A179794, A179795.

%K nonn

%O 1,1

%A _Artur Jasinski_, Jul 27 2010