login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A179067
Orders of consecutive clusters of twin primes.
5
1, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
For k>=1, 2k+4 consecutive primes P1, P2, ..., P2k+4 defining a cluster of twin primes of order k iff P2-P1 <> 2, P4-P3 = P6-P5 = ... = P2k+2 - P2k+1 = 2, P2k+4 - P2k+3 <> 2.
Also the lengths of maximal runs of terms differing by 2 in A029707 (leading index of twin primes), complement A049579. - Gus Wiseman, Dec 05 2024
EXAMPLE
The twin prime cluster ((101,103),(107,109)) of order k=2 stems from the 2k+4 = 8 consecutive primes (89, 97, 101, 103, 107, 109, 113, 127) because 97-89 <> 2, 103-101 = 109-107 = 2, 127-113 <> 2.
From Gus Wiseman, Dec 05 2024: (Start)
The leading indices of twin primes are:
2, 3, 5, 7, 10, 13, 17, 20, 26, 28, 33, 35, 41, 43, 45, 49, 52, ...
with maximal runs of terms differing by 2:
{2}, {3,5,7}, {10}, {13}, {17}, {20}, {26,28}, {33,35}, {41,43,45}, {49}, {52}, ...
with lengths a(n).
(End)
MAPLE
R:= 1: count:= 1: m:= 0:
q:= 5: state:= 1:
while count < 100 do
p:= nextprime(q);
if state = 1 then
if p-q = 2 then state:= 2; m:= m+1;
else
if m > 0 then R:= R, m; count:= count+1; fi;
m:= 0
fi
else state:= 1;
fi;
q:= p
od:
R; # Robert Israel, Feb 07 2023
MATHEMATICA
Length/@Split[Select[Range[2, 100], Prime[#+1]-Prime[#]==2&], #2==#1+2&] (* Gus Wiseman, Dec 05 2024 *)
PROG
(PARI) a(n)={my(o, P, L=vector(3)); n++; forprime(p=o=3, , L=concat(L[2..3], -o+o=p); L[3]==2||next; L[1]==2&&(P=concat(P, p))&&next; n--||return(#P); P=[p])} \\ M. F. Hasler, May 04 2015
CROSSREFS
Cf. A077800.
A000040 lists the primes, differences A001223 (run-lengths A333254, A373821).
A006512 gives the greater of twin primes.
A029707 gives the leading index of twin primes, complement A049579.
A038664 finds the first prime gap of length 2n.
A046933 counts composite numbers between primes.
Sequence in context: A165661 A107711 A242345 * A061893 A078530 A362302
KEYWORD
easy,nonn
AUTHOR
Franz Vrabec, Jun 27 2010
EXTENSIONS
More terms from M. F. Hasler, May 04 2015
STATUS
approved