login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Orders of consecutive clusters of twin primes.
5

%I #16 Dec 05 2024 22:42:28

%S 1,3,1,1,1,1,2,2,3,1,1,1,1,1,1,2,1,1,1,1,1,1,1,3,1,1,2,2,1,1,1,1,1,1,

%T 1,1,1,2,1,1,1,1,1,1,2,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,2,

%U 1,1,3,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,2,1,1,1,1,1,1,1

%N Orders of consecutive clusters of twin primes.

%C For k>=1, 2k+4 consecutive primes P1, P2, ..., P2k+4 defining a cluster of twin primes of order k iff P2-P1 <> 2, P4-P3 = P6-P5 = ... = P2k+2 - P2k+1 = 2, P2k+4 - P2k+3 <> 2.

%C Also the lengths of maximal runs of terms differing by 2 in A029707 (leading index of twin primes), complement A049579. - _Gus Wiseman_, Dec 05 2024

%H Robert Israel, <a href="/A179067/b179067.txt">Table of n, a(n) for n = 1..10000</a>

%H Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>.

%e The twin prime cluster ((101,103),(107,109)) of order k=2 stems from the 2k+4 = 8 consecutive primes (89, 97, 101, 103, 107, 109, 113, 127) because 97-89 <> 2, 103-101 = 109-107 = 2, 127-113 <> 2.

%e From _Gus Wiseman_, Dec 05 2024: (Start)

%e The leading indices of twin primes are:

%e 2, 3, 5, 7, 10, 13, 17, 20, 26, 28, 33, 35, 41, 43, 45, 49, 52, ...

%e with maximal runs of terms differing by 2:

%e {2}, {3,5,7}, {10}, {13}, {17}, {20}, {26,28}, {33,35}, {41,43,45}, {49}, {52}, ...

%e with lengths a(n).

%e (End)

%p R:= 1: count:= 1: m:= 0:

%p q:= 5: state:= 1:

%p while count < 100 do

%p p:= nextprime(q);

%p if state = 1 then

%p if p-q = 2 then state:= 2; m:= m+1;

%p else

%p if m > 0 then R:= R,m; count:= count+1; fi;

%p m:= 0

%p fi

%p else state:= 1;

%p fi;

%p q:= p

%p od:

%p R; # _Robert Israel_, Feb 07 2023

%t Length/@Split[Select[Range[2,100],Prime[#+1]-Prime[#]==2&],#2==#1+2&] (* _Gus Wiseman_, Dec 05 2024 *)

%o (PARI) a(n)={my(o,P,L=vector(3));n++;forprime(p=o=3,,L=concat(L[2..3],-o+o=p);L[3]==2||next;L[1]==2&&(P=concat(P,p))&&next;n--||return(#P);P=[p])} \\ _M. F. Hasler_, May 04 2015

%Y Cf. A077800.

%Y Cf. A001359, A111950, A087641.

%Y Cf. A035789, A035790, A035791, A035792, A035793, A035794, A035795.

%Y A000040 lists the primes, differences A001223 (run-lengths A333254, A373821).

%Y A006512 gives the greater of twin primes.

%Y A029707 gives the leading index of twin primes, complement A049579.

%Y A038664 finds the first prime gap of length 2n.

%Y A046933 counts composite numbers between primes.

%Y A000720, A006560, A006562, A014574, A037201, A107770, A122535, A155752, A175632, A251092.

%K easy,nonn

%O 1,2

%A _Franz Vrabec_, Jun 27 2010

%E More terms from _M. F. Hasler_, May 04 2015