The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175933 Number of ways of writing n=p+k with p a prime number and k a primorial number. 6
 0, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 2, 0, 2, 0, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 2, 1, 3, 0, 0, 0, 2, 1, 1, 0, 0, 0, 2, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 1, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Number of partitions of n into the sum of a prime number and a primorial number. Number of decompositions of n into an unordered sum of a prime number and a primorial number. For n through small powers of 10, the range of partition values seen is about log_10(n)+2. - Bill McEachen, Jan 07 2016 LINKS Bill McEachen, Table of n, a(n) for n = 1..10000 EXAMPLE a(4)=2 because 4(natural) = 2(prime)+2(primorial) = 3(prime)+1(primorial). MAPLE A002110 := proc(n) option remember; if n = 0 then 1; else mul( ithprime(k), k=1..n) ; end if; end proc: A175933 := proc(n) a := 0 ; for k from 0 do p := A002110(k) ; if p +2 > n then return a; elif isprime(n-p) then a := a+1 ; end if; end do: end proc: seq(A175933(n), n=1..120) ; # R. J. Mathar, Oct 25 2010 MATHEMATICA t = Table[Product[Prime@ k, {k, n}], {n, 0, 5}]; Table[Count[Map[First, Function[k, Transpose@ {k - #, #} &@ Prime@ Range@ PrimePi@ k]@ n], x_ /; MemberQ[t, x]], {n, 120}] (* Michael De Vlieger, Jan 09 2016 *) PROG (PARI) lyst(maxx)={n=1; while (n<=maxx, c=0; q=1; for(i5=0, n, if(i5>0, q=q*prime(i5)); if(q>n-2, break); z=truncate(q); if(isprime(n-z), c++)); print1(c, ", "); n+=1); } \\ Bill McEachen, Jan 07 2016 (PARI) A175933(n, p=1, k=1, c=0)={until(2>n-k*=p=nextprime(p+1), isprime(n-k)&&c++); c} \\ M. F. Hasler, Jan 21 2016 CROSSREFS Cf. A002110, A062602, A129363. Sequence in context: A293900 A284463 A169758 * A175940 A299236 A353970 Adjacent sequences: A175930 A175931 A175932 * A175934 A175935 A175936 KEYWORD nonn AUTHOR Juri-Stepan Gerasimov, Oct 24 2010 EXTENSIONS a(85), a(89), etc. corrected by R. J. Mathar, Oct 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 16:48 EDT 2024. Contains 371749 sequences. (Running on oeis4.)