login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175933
Number of ways of writing n=p+k with p a prime number and k a primorial number.
7
0, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 1, 2, 2, 0, 2, 0, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 2, 1, 3, 0, 0, 0, 2, 1, 1, 0, 0, 0, 2, 1, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 1, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 3, 1, 1
OFFSET
1,4
COMMENTS
Number of partitions of n into the sum of a prime number and a primorial number. Number of decompositions of n into an unordered sum of a prime number and a primorial number.
For n through small powers of 10, the range of partition values seen is about log_10(n)+2. - Bill McEachen, Jan 07 2016
LINKS
EXAMPLE
a(4)=2 because 4(natural) = 2(prime)+2(primorial) = 3(prime)+1(primorial).
MAPLE
A002110 := proc(n) option remember; if n = 0 then 1; else mul( ithprime(k), k=1..n) ; end if; end proc:
A175933 := proc(n) a := 0 ; for k from 0 do p := A002110(k) ; if p +2 > n then return a; elif isprime(n-p) then a := a+1 ; end if; end do: end proc:
seq(A175933(n), n=1..120) ; # R. J. Mathar, Oct 25 2010
MATHEMATICA
t = Table[Product[Prime@ k, {k, n}], {n, 0, 5}]; Table[Count[Map[First, Function[k, Transpose@ {k - #, #} &@ Prime@ Range@ PrimePi@ k]@ n], x_ /; MemberQ[t, x]], {n, 120}] (* Michael De Vlieger, Jan 09 2016 *)
PROG
(PARI) lyst(maxx)={n=1; while (n<=maxx, c=0; q=1; for(i5=0, n, if(i5>0, q=q*prime(i5)); if(q>n-2, break); z=truncate(q); if(isprime(n-z), c++)); print1(c, ", "); n+=1); } \\ Bill McEachen, Jan 07 2016
(PARI) A175933(n, p=1, k=1, c=0)={until(2>n-k*=p=nextprime(p+1), isprime(n-k)&&c++); c} \\ M. F. Hasler, Jan 21 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(85), a(89), etc. corrected by R. J. Mathar, Oct 25 2010
STATUS
approved