login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175940
Number of ways of writing n=p+f with p a prime and f a factorial.
5
0, 0, 1, 2, 1, 1, 1, 2, 2, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 2, 0, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 2, 1, 2, 0, 0, 0, 2, 1, 2, 0, 0, 0, 1, 1, 2, 1, 1, 0, 2, 0, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 2, 0, 1, 1, 1, 0, 1, 1, 3, 0, 0, 0, 1, 1, 2, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 1, 3, 1, 1
OFFSET
1,4
COMMENTS
Number of partitions of n into the sum of a prime number and a factorial number. Number of decompositions of n into an unordered sum of a prime number and a factorial number.
LINKS
EXAMPLE
a(29)=2 because 29 has two prime + factorial representations, 5+4! and 23+3!.
MAPLE
a:= proc(n) local t, k;
t:= 0;
for k while k! < n do
if isprime(n-k!) then t:= t+1 fi
od;
t
end proc:
seq(a(n), n=1..100); # Robert Israel, Oct 13 2014
MATHEMATICA
a[n_] := Module[{t = 0, k}, For[k = 1, k! < n, k++, If[PrimeQ[n - k!] , t++]]; t];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 02 2023, after Robert Israel *)
PROG
(PARI)
a(n) = c=0; for(i=1, n, if(isprime(n-i!), c++)); c
vector(100, n, a(n)) \\ Derek Orr, Oct 13 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited and entries checked by D. S. McNeil, Nov 26 2010
STATUS
approved