OFFSET
0,7
LINKS
FORMULA
a(n) = [x^n] 1/(1 - Sum_{p|n, p prime} x^p).
a(n) = 1 if n is a prime power > 1.
a(n) = 2 if n is a squarefree semiprime.
EXAMPLE
a(6) = 2 because 6 has 4 divisors {1, 2, 3, 6} among which 2 are primes {2, 3} therefore we have [3, 3] and [2, 2, 2].
MAPLE
a:= proc(n) option remember; local b, l;
l, b:= numtheory[factorset](n),
proc(m) option remember; `if`(m=0, 1,
add(`if`(j>m, 0, b(m-j)), j=l))
end; b(n)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Mar 28 2017
MATHEMATICA
Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[PrimeQ[d[[k]]]] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 75}]
PROG
(Python)
from sympy import divisors, isprime
from sympy.core.cache import cacheit
@cacheit
def a(n):
l=[x for x in divisors(n) if isprime(x)]
@cacheit
def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m)
return b(n)
print([a(n) for n in range(101)]) # Indranil Ghosh, Aug 01 2017, after Maple code
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 27 2017
STATUS
approved