login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284465
Number of compositions (ordered partitions) of n into prime power divisors of n (not including 1).
4
1, 0, 1, 1, 2, 1, 2, 1, 6, 2, 2, 1, 36, 1, 2, 2, 56, 1, 90, 1, 201, 2, 2, 1, 4725, 2, 2, 20, 1085, 1, 15778, 1, 5272, 2, 2, 2, 476355, 1, 2, 2, 270084, 1, 302265, 1, 35324, 3910, 2, 1, 67279595, 2, 14047, 2, 219528, 1, 5863044, 2, 14362998, 2, 2, 1, 47466605656, 1, 2, 35662, 47350056, 2, 119762253, 1, 9479643
OFFSET
0,5
LINKS
FORMULA
a(n) = [x^n] 1/(1 - Sum_{p^k|n, p prime, k>=1} x^(p^k)).
a(n) = 1 if n is a prime.
a(n) = 2 if n is a semiprime.
EXAMPLE
a(8) = 6 because 8 has 4 divisors {1, 2, 4, 8} among which 3 are prime powers > 1 {2, 4, 8} therefore we have [8], [4, 4], [4, 2, 2], [2, 4, 2], [2, 2, 4] and [2, 2, 2, 2].
MAPLE
F:= proc(n) local f, G;
G:= 1/(1 - add(add(x^(f[1]^j), j=1..f[2]), f = ifactors(n)[2]));
coeff(series(G, x, n+1), x, n);
end proc:
map(F, [$0..100]); # Robert Israel, Mar 29 2017
MATHEMATICA
Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[PrimePowerQ[d[[k]]]] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 68}]
PROG
(Python)
from sympy import divisors, primefactors
from sympy.core.cache import cacheit
@cacheit
def a(n):
l=[x for x in divisors(n) if len(primefactors(x))==1]
@cacheit
def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m)
return b(n)
print([a(n) for n in range(71)]) # Indranil Ghosh, Aug 01 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 27 2017
STATUS
approved