Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 21 2021 04:42:38
%S 1,0,1,1,2,1,2,1,6,2,2,1,36,1,2,2,56,1,90,1,201,2,2,1,4725,2,2,20,
%T 1085,1,15778,1,5272,2,2,2,476355,1,2,2,270084,1,302265,1,35324,3910,
%U 2,1,67279595,2,14047,2,219528,1,5863044,2,14362998,2,2,1,47466605656,1,2,35662,47350056,2,119762253,1,9479643
%N Number of compositions (ordered partitions) of n into prime power divisors of n (not including 1).
%H Robert Israel, <a href="/A284465/b284465.txt">Table of n, a(n) for n = 0..5039</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimePower.html">Prime Power</a>
%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%F a(n) = [x^n] 1/(1 - Sum_{p^k|n, p prime, k>=1} x^(p^k)).
%F a(n) = 1 if n is a prime.
%F a(n) = 2 if n is a semiprime.
%e a(8) = 6 because 8 has 4 divisors {1, 2, 4, 8} among which 3 are prime powers > 1 {2, 4, 8} therefore we have [8], [4, 4], [4, 2, 2], [2, 4, 2], [2, 2, 4] and [2, 2, 2, 2].
%p F:= proc(n) local f,G;
%p G:= 1/(1 - add(add(x^(f[1]^j),j=1..f[2]),f = ifactors(n)[2]));
%p coeff(series(G,x,n+1),x,n);
%p end proc:
%p map(F, [$0..100]); # _Robert Israel_, Mar 29 2017
%t Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[PrimePowerQ[d[[k]]]] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 68}]
%o (Python)
%o from sympy import divisors, primefactors
%o from sympy.core.cache import cacheit
%o @cacheit
%o def a(n):
%o l=[x for x in divisors(n) if len(primefactors(x))==1]
%o @cacheit
%o def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m)
%o return b(n)
%o print([a(n) for n in range(71)]) # _Indranil Ghosh_, Aug 01 2017
%Y Cf. A066882, A100346, A246655, A280195, A284289.
%K nonn
%O 0,5
%A _Ilya Gutkovskiy_, Mar 27 2017