

A062602


Number of ways of writing n = p+c with p prime and c nonprime (1 or a composite number).


14



0, 0, 1, 1, 0, 2, 1, 2, 2, 1, 4, 3, 3, 3, 4, 2, 6, 3, 5, 4, 6, 3, 8, 3, 7, 4, 9, 5, 9, 4, 8, 7, 9, 4, 11, 3, 11, 9, 10, 6, 12, 5, 11, 8, 12, 7, 14, 5, 13, 7, 15, 9, 15, 6, 14, 10, 16, 9, 16, 5, 15, 13, 16, 8, 18, 6, 18, 15, 17, 9, 19, 8, 18, 12, 19, 11, 21, 7, 21, 14, 20, 13, 22, 7, 21, 14
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,6


LINKS

Donovan Johnson, Table of n, a(n) for n = 1..10000
Index entries for sequences related to Goldbach conjecture


FORMULA

a(n+1) = SUM(A010051(k)*A005171(nk+1): 1<=k<=n). [From Reinhard Zumkeller, Nov 05 2009]
a(n) + A061358(n) + A062610(n) = A004526(n).  R. J. Mathar, Sep 10 2021


EXAMPLE

n = 22 has floor(n/2) = 11 partitions of form n = a + b; 3 partitions are of prime + prime [3 + 19 = 5 + 17 = 11 + 11], 3 partitions are of prime + nonprime [2 + 20 = 7 + 15 = 13 + 9], 5 partitions are nonprime + nonprime [1 + 21 = 4 + 18 = 6 + 16 = 8 + 14 = 10 + 12]. So a(22) = 3.


MATHEMATICA

Table[Length[Select[Range[Floor[n/2]], (PrimeQ[#] && Not[PrimeQ[n  #]])  (Not[PrimeQ[#]] && PrimeQ[n  #]) &]], {n, 80}] (* Alonso del Arte, Apr 21 2013 *)
Table[Length[Select[IntegerPartitions[n, {2}], AnyTrue[#, PrimeQ] && !AllTrue[ #, PrimeQ]&]], {n, 90}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 19 2020 *)


CROSSREFS

Cf. A061358, A014092, A062610, A224712.
Sequence in context: A242210 A035369 A129719 * A123148 A173410 A166548
Adjacent sequences: A062599 A062600 A062601 * A062603 A062604 A062605


KEYWORD

nonn,easy


AUTHOR

Labos Elemer, Jul 04 2001


STATUS

approved



