login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175934
Number of lattice paths from (0,0) to (n,n) using steps S={(1,0),(0,1),(r,r)|0<r<=2} that never go above the line y=x.
7
1, 2, 7, 27, 116, 532, 2554, 12675, 64507, 334836, 1765833, 9434779, 50962640, 277839361, 1526834471, 8448751385, 47035469902, 263260232668, 1480527858436, 8361881707770, 47409359120684, 269736194796537, 1539547726712437, 8812663513352489, 50579825742416942, 291012706492224315, 1678146650028389023
OFFSET
0,2
COMMENTS
Number of lattice paths of weight n that start in (0,0), end on the horizontal axis, never go below this axis, whose steps are of the following four kinds: h=(1,0) of weight 1, H=(1,0) of weight 2, u=(1,1) of weight 1, and d=(1,-1) of weight 0; the weight of a path is the sum of the weights of its steps. Example: a(2)=7 because we have hh, H, hud, udh, udud, uhd, and uudd. - Emeric Deutsch, Sep 09 2014
LINKS
J. P. S. Kung and A. de Mier, Catalan lattice paths with rook, bishop and spider steps, Journal of Combinatorial Theory, Series A 120 (2013) 379-389. - From N. J. A. Sloane, Dec 27 2012
FORMULA
G.f.: (1 - x - x^2 - sqrt(x^4 + 2*x^3 - x^2 - 6*x + 1))/(2*x). - Mark van Hoeij, Apr 16 2013
G.f.: 1/(1 - x*(1 + x + 1/(1 - x*(1 + x + 1/...)))). - Michael Somos, Mar 30 2014
G.f. g = g(x) satisfies g = 1 + x*g + x^2*g + x*g^2. - Emeric Deutsch, Sep 09 2014
a(n) = Sum_{k=0..n} ((C(k)*Sum_{j=0..k+1} (binomial(k+1,j)*Sum_{i=0..n-k} (3^(j-i)*binomial(j,i)*binomial(k-j+1,n-3*k+2*j-i-2)*2^(2*(k-j)-n+1)*(-1)^(k-j+1))))), a(0)=1, a(1)=2, where C(k) = A000108(k). - Vladimir Kruchinin, Mar 01 2016
a(0) = 1, a(1) = 2; a(n) = 2 * a(n-1) + 3 * a(n-2) + Sum_{k=2..n-1} a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 20 2021
G.f.: 1/G(0), where G(k) = 1 - (2*x+x^2)/(1-x/G(k+1)) (continued fraction). - Nikolaos Pantelidis, Jan 08 2023
EXAMPLE
a(2)=7 because we can reach (2,2) in the following ways:
(1,0),(1,0),(0,1),(0,1);
(1,0),(0,1),(1,0),(0,1);
(1,0),(0,1),(1,1);
(1,0),(1,1),(0,1);
(1,1),(1,0),(0,1);
(1,1),(1,1);
(2,2).
G.f. = 1 + 2*x + 7*x^2 + 27*x^3 + 116*x^4 + 532*x^5 + 2554*x^6 + ...
PROG
(Sage)
n=20
M=[]
for posx in range(0, n+1):
for posy in range(0, n+1):
if posx==0:
if posy==0:
M.append([1])
else:
M.append([0])
else:
if posy==0:
M[0].append(0)
M[0][posx]=M[0][posx]+M[0][posx-1]
else:
if posy>posx:
M[posy].append(0)
else:
M[posy].append(0)
M[posy][posx]=M[posy][posx-1]+M[posy][posx]
M[posy][posx]=M[posy-1][posx]+M[posy][posx]
for r in range(1, min(posx, posy, 2)+1):
M[posy][posx]=M[posy-r][posx-r]+M[posy][posx]
L=[]
for k in range(0, n+1):
L.append(M[k][k])
print(L)
(Maxima)
a(n):=if n<2 then n+1 else sum((binomial(2*k, k)*sum(binomial(k+1, j)*sum(3^(j-i)*binomial(j, i)*binomial(k-j+1, n-3*k+2*j-i-2)*(2)^(-n+2*(k-j)+1)*(-1)^(k-j+1), i, 0, n-k), j, 0, k+1))/(k+1), k, 0, n); /* Vladimir Kruchinin, Mar 01 2016 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric Werley, Dec 06 2010
STATUS
approved