login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173231
a(n) is the n-th number m such that 6*m-1 is composite plus the n-th number k such that 6*k+1 is composite.
1
10, 19, 22, 30, 35, 40, 44, 48, 51, 59, 63, 66, 70, 73, 80, 87, 90, 93, 95, 102, 104, 106, 110, 115, 119, 122, 126, 132, 134, 138, 142, 147, 153, 156, 161, 165, 168, 171, 174, 176, 178, 184, 186, 193, 195, 198, 202, 204, 210, 216, 221, 224, 227, 230, 234, 236
OFFSET
1,1
LINKS
FORMULA
a(n) = A046953(n) + A046954(n+1).
EXAMPLE
a(1) = 6 + 4 = 10;
a(2) = 11 + 8 = 19;
a(3) = 13 + 9 = 22.
MAPLE
A046953 := proc(n) if n = 1 then 6 ; else for a from procname(n-1)+1 do if not isprime(6*a-1) then return a; end if; end do: end if; end proc:
A046954 := proc(n) if n = 1 then 0 ; else for a from procname(n-1)+1 do if not isprime(6*a+1) then return a; end if; end do: end if; end proc:
A173231 := proc(n) A046953(n)+A046954(n+1) ; end proc:
seq(A173231(n), n=1..120) ; # R. J. Mathar, May 02 2010
MATHEMATICA
A046953:= Select[Range[250], !PrimeQ[6#-1] &];
A046954:= Select[Range[0, 250], !PrimeQ[6#+1] &];
Table[A046953[[n]] +A046954[[n+1]], {n, 1, 80}]
PROG
(Magma)
A046953:=[n: n in [1..250] | not IsPrime(6*n-1)];
A046954:=[n: n in [0..250] | not IsPrime(6*n+1)];
[A046953[n] + A046954[n+1]: n in [1..80]]; // G. C. Greubel, Feb 21 2019
(Sage)
A046953=[n for n in (1..250) if not is_prime(6*n-1)];
A046954=[n for n in (0..250) if not is_prime(6*n+1)];
[A046953[n] + A046954[n+1] for n in (0..80)] # G. C. Greubel, Feb 21 2019
(GAP)
A046953:=Filtered([1..250], k-> not IsPrime(6*k-1));;
A046954:=Filtered([0..250], n-> not IsPrime(6*n+1));;
Print(List([1..80], j->A046953[j]+A046954[j+1])); # G. C. Greubel, Feb 21 2019
KEYWORD
nonn
AUTHOR
Juri-Stepan Gerasimov, Feb 13 2010, Feb 15 2010
EXTENSIONS
Entries checked by R. J. Mathar, May 02 2010
STATUS
approved