login
A173234
Expansion of x*(1+3*x^2-2*x^3+2*x^4-x^5)/((1+x)*(x-1)^2*(x^2+1)^2).
1
0, 1, 1, 3, 1, 2, 3, 5, 2, 3, 5, 7, 3, 4, 7, 9, 4, 5, 9, 11, 5, 6, 11, 13, 6, 7, 13, 15, 7, 8, 15, 17, 8, 9, 17, 19, 9, 10, 19, 21, 10, 11, 21, 23, 11, 12, 23, 25, 12, 13, 25, 27, 13, 14, 27, 29, 14, 15, 29, 31, 15, 16, 31, 33, 16, 17, 33, 35, 17, 18, 35, 37, 18, 19, 37, 39, 19, 20, 39, 41, 20
OFFSET
0,4
COMMENTS
The fractions A005563(n+1)/A000290(n+1) are 3, 8/4, 15/9, 24/16...,
in reduced form = 3, 2, 5/3, 3/2, 7/5... = a(2n+3)/a(2n+2).
The sequence shows the denominator-numerator pairs of the fractions.
FORMULA
G.f.: x*(1+3*x^2-2*x^3+2*x^4-x^5)/((1+x)*(x-1)^2*(x^2+1)^2).
a(n) = +a(n-1) -a(n-2) +a(n-3) +a(n-4) -a(n-5) +a(n-6) -a(n-7).
a(2n) = A026741(n). a(2n+1) = A026741(n+2).
MATHEMATICA
CoefficientList[Series[x*(1 + 3*x^2 - 2*x^3 + 2*x^4 - x^5)/((1 + x)*(x - 1)^2*(x^2 + 1)^2), {x, 0, 100}], x] (* Wesley Ivan Hurt, May 03 2017 *)
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Paul Curtz, Feb 13 2010
EXTENSIONS
Edited by R. J. Mathar, Feb 24 2010
STATUS
approved