login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the n-th number m such that 6*m-1 is composite plus the n-th number k such that 6*k+1 is composite.
1

%I #19 Sep 08 2022 08:45:50

%S 10,19,22,30,35,40,44,48,51,59,63,66,70,73,80,87,90,93,95,102,104,106,

%T 110,115,119,122,126,132,134,138,142,147,153,156,161,165,168,171,174,

%U 176,178,184,186,193,195,198,202,204,210,216,221,224,227,230,234,236

%N a(n) is the n-th number m such that 6*m-1 is composite plus the n-th number k such that 6*k+1 is composite.

%C A001477 = A002822 U A171696 U A067611 where A067611 = A121763 U A121765; A121763 = A046954 U A171696 and A121765 = A046953 U A171696.

%H G. C. Greubel, <a href="/A173231/b173231.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A046953(n) + A046954(n+1).

%e a(1) = 6 + 4 = 10;

%e a(2) = 11 + 8 = 19;

%e a(3) = 13 + 9 = 22.

%p A046953 := proc(n) if n = 1 then 6 ; else for a from procname(n-1)+1 do if not isprime(6*a-1) then return a; end if; end do: end if; end proc:

%p A046954 := proc(n) if n = 1 then 0 ; else for a from procname(n-1)+1 do if not isprime(6*a+1) then return a; end if; end do: end if; end proc:

%p A173231 := proc(n) A046953(n)+A046954(n+1) ; end proc:

%p seq(A173231(n),n=1..120) ; # _R. J. Mathar_, May 02 2010

%t A046953:= Select[Range[250], !PrimeQ[6#-1] &];

%t A046954:= Select[Range[0, 250], !PrimeQ[6#+1] &];

%t Table[A046953[[n]] +A046954[[n+1]], {n,1,80}]

%o (Magma)

%o A046953:=[n: n in [1..250] | not IsPrime(6*n-1)];

%o A046954:=[n: n in [0..250] | not IsPrime(6*n+1)];

%o [A046953[n] + A046954[n+1]: n in [1..80]]; // _G. C. Greubel_, Feb 21 2019

%o (Sage)

%o A046953=[n for n in (1..250) if not is_prime(6*n-1)];

%o A046954=[n for n in (0..250) if not is_prime(6*n+1)];

%o [A046953[n] + A046954[n+1] for n in (0..80)] # _G. C. Greubel_, Feb 21 2019

%o (GAP)

%o A046953:=Filtered([1..250], k-> not IsPrime(6*k-1));;

%o A046954:=Filtered([0..250], n-> not IsPrime(6*n+1));;

%o Print(List([1..80], j->A046953[j]+A046954[j+1])); # _G. C. Greubel_, Feb 21 2019

%Y Cf. A001477, A002822, A067611, A046953, A046954, A121763, A121765, A171696.

%K nonn

%O 1,1

%A _Juri-Stepan Gerasimov_, Feb 13 2010, Feb 15 2010

%E Entries checked by _R. J. Mathar_, May 02 2010