login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046954
Numbers k such that 6*k + 1 is nonprime.
11
0, 4, 8, 9, 14, 15, 19, 20, 22, 24, 28, 29, 31, 34, 36, 39, 41, 42, 43, 44, 48, 49, 50, 53, 54, 57, 59, 60, 64, 65, 67, 69, 71, 74, 75, 78, 79, 80, 82, 84, 85, 86, 88, 89, 92, 93, 94, 97, 98, 99, 104, 106, 108, 109, 111, 113, 114, 116, 117, 119, 120, 124, 127, 129, 130, 132, 133, 134, 136, 139, 140
OFFSET
1,2
COMMENTS
Equals A171696 U A121763; A121765 U A171696 = A046953; A121763 U A121765 = A067611 where A067611 U A002822 U A171696 = A001477. - Juri-Stepan Gerasimov, Feb 13 2010, Feb 15 2010
These numbers (except 0) can be written as 6xy +-(x+y) for x > 0, y > 0. - Ron R Spencer, Aug 01 2016
LINKS
EXAMPLE
a(2)=8 because 6*8 + 1 = 49, which is composite.
MAPLE
remove(k-> isprime(6*k+1), [$0..140])[]; # Muniru A Asiru, Feb 22 2019
MATHEMATICA
a = Flatten[Table[If[PrimeQ[6*n + 1] == False, n, {}], {n, 0, 50}]] (* Roger L. Bagula, May 17 2007 *)
Select[Range[0, 200], !PrimeQ[6 # + 1] &] (* Vincenzo Librandi, Sep 27 2013 *)
PROG
(Haskell)
a046954 n = a046954_list !! (n-1)
a046954_list = map (`div` 6) $ filter ((== 0) . a010051' . (+ 1)) [0, 6..]
-- Reinhard Zumkeller, Jul 13 2014
(PARI) is(n)=!isprime(6*n+1) \\ Charles R Greathouse IV, Aug 01 2016
(Magma) [n: n in [0..250] | not IsPrime(6*n+1)]; // G. C. Greubel, Feb 21 2019
(Sage) [n for n in (0..250) if not is_prime(6*n+1)] # G. C. Greubel, Feb 21 2019
(GAP) Filtered([0..250], k-> not IsPrime(6*k+1)) # G. C. Greubel, Feb 21 2019
CROSSREFS
Cf. A047845 (2n+1), A045751 (4n+1), A127260 (8n+1).
Cf. A046953, A008588, A016921, subsequence of A067611, complement of A024899.
Sequence in context: A163408 A060299 A120512 * A112775 A107747 A121763
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Aug 08 2008 at the suggestion of R. J. Mathar
Corrected by Juri-Stepan Gerasimov, Feb 13 2010, Feb 15 2010
Corrected by Vincenzo Librandi, Sep 27 2013
STATUS
approved