login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172055
n-th number k such that 6*k-1 is composite while 6*k+1 is prime plus n-th number m such that 6*m-1 is prime while 6*m+1 is composite.
1
10, 19, 22, 30, 36, 45, 49, 63, 66, 85, 93, 98, 100, 110, 115, 122, 126, 132, 138, 143, 155, 158, 168, 171, 178, 185, 187, 198, 206, 213, 217, 229, 231, 236, 239, 243, 248, 255, 269, 275, 284, 293, 300, 309, 317, 321, 325, 331, 337, 343, 349, 351, 357, 378
OFFSET
1,1
LINKS
FORMULA
a(n) = A121765(n) + A121763(n).
MAPLE
A121765:=select(k->not isprime(6*k-1) and isprime(6*k+1), [$1..350]):
A121763:=select(n->not isprime(6*n+1) and isprime(6*n-1), [$1..350]):
seq(A121765[m]+A121763[m], m=1..60); # Muniru A Asiru, Feb 21 2019
MATHEMATICA
A121765:= Select[Range[350], !PrimeQ[6#-1] && PrimeQ[6#+1] &];
A121763:= Select[Range[350], PrimeQ[6#-1] && !PrimeQ[6#+1] &];
Table[A121765[[n]] + A121763[[n]], {n, 1, 80}] (* G. C. Greubel, Feb 20 2019 *)
PROG
(Magma)
A121765:=[n: n in [1..350] | not IsPrime(6*n-1) and IsPrime(6*n+1)];
A121763:=[n: n in [1..350] | IsPrime(6*n-1) and not IsPrime(6*n+1)];
[A121765[n] + A121763[n]: n in [1..80]]; // G. C. Greubel, Feb 20 2019
(Sage)
A121765=[n for n in (1..350) if not is_prime(6*n-1) and is_prime(6*n+1)];
A121763=[n for n in (1..350) if is_prime(6*n-1) and not is_prime(6*n+1)];
[A121765[n] + A121763[n] for n in (0..80)] # G. C. Greubel, Feb 20 2019
(GAP)
A121765:=Filtered([1..350], k-> not IsPrime(6*k-1) and IsPrime(6*k+1));;
A121763:=Filtered([1..350], n-> not IsPrime(6*n+1) and IsPrime(6*n-1));;
Print(List([1..80], j->A121765[j]+A121763[j])); # G. C. Greubel, Feb 20 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Entries checked by R. J. Mathar, May 22 2010
STATUS
approved