The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171216 (4^(5*n+1) + 7)/11. 1
 373, 381301, 390451573, 399822410101, 409418147942773, 419244183493398901, 429306043897240473973, 439609388950774245347701, 450160014285592827236045173, 460963854628447055089710256501, 472026987139529784411863302656373 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS In A165806, A165808 & A165809 a congruence property of polynomial functions was demonstrated. In the present sequence a congruence property of exponential functions is demonstrated. Let the function be f(n) = 2^n + 7. Then f(n + k*phi(f(n))) is congruent to 0 mod(f(n)). This is a sequence of quotients generated by (f(n + k*phi f(n)))/f(n) when n = 2. REFERENCES A. K. Devaraj, "Euler's generalisation of Fermat's theorem - a further generalisation" - Hawaii International conference on Mathematics & Statistics (2004). [ISSN 15503747] LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..300 Index entries for linear recurrences with constant coefficients, signature (1025,-1024). FORMULA G.f. -x*(-373+1024*x) / ( (1024*x-1)*(x-1) ). - R. J. Mathar, Oct 08 2011 PROG (PARI) a(n)=(4^(5*n+1) + 7)/11 \\ Charles R Greathouse IV, Oct 05 2011 (Magma) [(4^(5*n+1) + 7)/11 : n in [1..15]]; // Vincenzo Librandi, Oct 06 2011 CROSSREFS Sequence in context: A168168 A226850 A208834 * A108844 A025336 A025328 Adjacent sequences: A171213 A171214 A171215 * A171217 A171218 A171219 KEYWORD nonn,easy AUTHOR A.K. Devaraj, Dec 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 29 04:26 EST 2024. Contains 370401 sequences. (Running on oeis4.)