OFFSET
1,1
COMMENTS
Old name was: As mentioned in short description of A165806, polynomials have the following unique property: let f(x) be a polynomial in x. Then f(x+k*f(x)) is congruent to 0 (mod(f(x)); here k belongs to N. The present case pertains to f(x) = x^3 + 2x + 11 when x is complex (2 + 3i). The quotient f(x+k*f(x))/f(x), for any given k, consists of two parts: a) a rational integer part and b) rational integer coefficient of sqrt(-1). This sequence pertains to a.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
From R. J. Mathar, Sep 30 2009: (Start)
a(n) = 1-13*n-321*n^2+736*n^3.
G.f.: x*(403+2967*x+1047*x^2-x^3)/(1-x)^4. (End)
From G. C. Greubel, Apr 08 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (1 -333*x - 318*x^2 + x^3)*exp(x). (end)
EXAMPLE
f(x)= x^3 + 2x + 11. When x = 2 + 3i, we get f(x) = -31 + 15i. x + f(x) = -29 + 18i. f(-29 + 18i) = 3752 + 39618i. When this value is divided by (-31 + 15i) we get 403 - 1083i; needless to say, PARI takes care of necessary rationalization.
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {403, 4579, 16945, 41917}, 100](* G. C. Greubel, Apr 08 2016 *)
PROG
(PARI) Vec((403+2967*x+1047*x^2-x^3)/(1-x)^4+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
A.K. Devaraj, Sep 29 2009
EXTENSIONS
More terms from R. J. Mathar, Sep 30 2009
Edited by Jon E. Schoenfield, Dec 12 2013
STATUS
approved