login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A097741 Pell equation solutions (10*a(n))^2 - 101*b(n)^2 = -1 with b(n):=A097742(n), n>=0. 3
1, 403, 162005, 65125607, 26180332009, 10524428342011, 4230794013156413, 1700768668860536015, 683704774087922321617, 274847618414675912754019, 110488058897925629004794021, 44415924829347688184014442423 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..383

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (402, -1).

FORMULA

a(n) = S(n, 2*201) + S(n-1, 2*201) = S(2*n, 2*sqrt(101)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x).

a(n) = ((-1)^n)*T(2*n+1, 10*I)/(10*I) with the imaginary unit I and Chebyshev polynomials of the first kind. See the T-triangle A053120.

G.f.: (1 + x)/(1 - 2*201*x + x^2).

a(n) = 402*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=403 . - Philippe Deléham, Nov 18 2008

EXAMPLE

(x,y) = (10*1=10;1), (4030=10*403;401), (1620050=10*162005;161201), ... give the positive integer solutions to x^2 - 101*y^2 =-1.

MATHEMATICA

LinearRecurrence[{402, -1}, {1, 403}, 20] (* or *) CoefficientList[Series[(1+x)/(1-402x+x^2), {x, 0, 20}], x]  (* Harvey P. Dale, Apr 20 2011 *)

CROSSREFS

Cf. A097740 for S(n, 2*201).

Sequence in context: A261857 A165808 A283662 * A117836 A185640 A185637

Adjacent sequences:  A097738 A097739 A097740 * A097742 A097743 A097744

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Aug 31 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 08:35 EDT 2017. Contains 287093 sequences.