login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171214
G.f. satisfies: A(x) = x + x*A(A(x/3)) = Sum_{n>=1} a(n)*x^n/3^(n(n+1)/2).
2
1, 1, 2, 10, 137, 5296, 588365, 190088818, 179954321171, 501722122937995, 4134242130461174144, 100943613343624534183723, 7317423203727305175501741434, 1577227642328692213664066391691150
OFFSET
1,3
COMMENTS
More generally, if F(x) = x + x*F(F(qx)), then
F(x) = x + x*F(qx) + x*F(qx)*F(qF(qx) + x*F(qx)*F(qF(qx))*F(qF(qF(qx))) +...
with a simple solution at q=1/2:
F(x) = x/(1-x/2) satisfies F(x) = x + x*F(F(x/2)).
At q=1, F(x,q=1) is the g.f. of A030266.
QUESTIONS regarding convergence of F(x,q) as a power series in x.
(1) What is Q, the maximum q below which a radius of convergence exists? Is Q=1?
(2) What is the radius of convergence for a given q < Q?
EXAMPLE
G.f.: A(x) = x + x^2/3 + 2*x^3/3^3 + 10*x^4/3^6 + 137*x^5/3^10 + 5296*x^6/3^15 +...+ a(n)*x^n/3^(n(n-1)/2) +...
A(x) = x + x*A(x/3) + x*A(x/3)*A(A(x/3)/3) + x*A(x/3)*A(A(x/3)/3)*A(A(A(x/3)/3)/3) +...
A(A(x)) = x + 2*x^2/3 + 10*x^3/3^3 + 137*x^4/3^6 + 5296*x^5/3^10 +...
SUMS OF SERIES at certain arguments.
A(1) = 1.423879975541542344910599787693637973194...
A(1/3) = 0.373293286580877833612329400906044642790...
A(A(1/3)) = A(1) - 1 = 0.42387997554...
A(A(1)) = 2.387414460111728675082753594461076041830...
A(3) = 3 + 3*A(A(1)) = 10.16224338033518602524826...
PROG
(PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+x*subst(A, x, subst(A, x, x/3+O(x^n)))); 3^(n*(n-1)/2)*polcoeff(A, n)}
CROSSREFS
Cf. A171212 (q=2), A171213 (q=3), A030266 (q=1).
Sequence in context: A134981 A087417 A270589 * A213955 A091990 A014228
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 08 2009
STATUS
approved