The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A171215 Row cubed sums of triangle of Lucas polynomials (A034807) for n>0: Sum_{k=0..[n/2]} A034807(n,k)^3. 2
 1, 9, 28, 73, 251, 954, 3431, 12617, 48142, 184509, 710755, 2768410, 10857575, 42779655, 169411778, 673898825, 2690398105, 10776264120, 43294049155, 174399508573, 704214759836, 2849828137869, 11555835845903, 46943852758298 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..160 FORMULA Equals the logarithmic derivative of A171185. EXAMPLE L.g.f.: L(x) = x + 9*x^2/2 + 28*x^3/3 + 73*x^4/4 + 251*x^5/5 +... exp(L(x)) = 1 + x + 5*x^2 + 14*x^3 + 40*x^4 + 126*x^5 + 408*x^6 +...+ A171185(n)*x^n +... PROG (PARI) {a(n)=sum(k=0, n\2, (binomial(n-k, k)+binomial(n-k-1, k-1))^3)} (Maxima) makelist(sum((binomial(n-k, k)+binomial(n-k-1, k-1))^3, k, 0, floor(n/2)), n, 1, 24); /* Bruno Berselli, May 19 2011 */ (Magma) A034807cubed:=func< n | [(Binomial(n-k, k)+Binomial(n-k-1, k-1))^3: k in [0..Floor(n/2)]] >; [&+A034807cubed(n): n in [1..24]]; // Bruno Berselli, May 19 2011 CROSSREFS Cf. A171185, A132461, A171187. Sequence in context: A017669 A277065 A001158 * A296601 A294567 A053819 Adjacent sequences: A171212 A171213 A171214 * A171216 A171217 A171218 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 14 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 22:38 EST 2023. Contains 367717 sequences. (Running on oeis4.)