login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (4^(5*n+1) + 7)/11.
1

%I #24 Mar 20 2024 07:53:22

%S 373,381301,390451573,399822410101,409418147942773,419244183493398901,

%T 429306043897240473973,439609388950774245347701,

%U 450160014285592827236045173,460963854628447055089710256501,472026987139529784411863302656373

%N a(n) = (4^(5*n+1) + 7)/11.

%C In A165806, A165808 & A165809 a congruence property of polynomial functions was demonstrated. In the present sequence a congruence property of exponential functions is demonstrated. Let the function be f(n) = 2^n + 7. Then f(n + k*phi(f(n))) is congruent to 0 mod(f(n)). This is a sequence of quotients generated by (f(n + k*phi f(n)))/f(n) when n = 2.

%D A. K. Devaraj, "Euler's generalisation of Fermat's theorem - a further generalisation" - Hawaii International conference on Mathematics & Statistics (2004). [ISSN 15503747]

%H Vincenzo Librandi, <a href="/A171216/b171216.txt">Table of n, a(n) for n = 1..300</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1025,-1024).

%F G.f. -x*(-373+1024*x) / ( (1024*x-1)*(x-1) ). - _R. J. Mathar_, Oct 08 2011

%t (4^(5*Range[15]+1)+7)/11 (* _Paolo Xausa_, Mar 20 2024 *)

%o (PARI) a(n)=(4^(5*n+1) + 7)/11 \\ _Charles R Greathouse IV_, Oct 05 2011

%o (Magma) [(4^(5*n+1) + 7)/11 : n in [1..15]]; // _Vincenzo Librandi_, Oct 06 2011

%K nonn,easy

%O 1,1

%A _A.K. Devaraj_, Dec 05 2009