The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161344 Numbers k with A033676(k)=2, where A033676 is the largest divisor <= sqrt(k). 51
 4, 6, 8, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Define a sieve operation with parameter s that eliminates integers of the form s^2 + s*i (i >= 0) from the set A000027 of natural numbers. The sequence lists those natural numbers that are eliminated by the sieve s=2 and cannot be eliminated by any sieve s >= 3. - R. J. Mathar, Jun 24 2009 After a(3)=8 all terms are 2*prime; for n > 3, a(n) = 2*prime(n-1) = 2*A000040(n-1). - Zak Seidov, Jul 18 2009 From Omar E. Pol, Jul 18 2009: (Start) A classification of the natural numbers A000027. ============================================================= Numbers k whose largest divisor <= sqrt(k) equals j ============================================================= j       Sequence     Comment ============================================================= 1 ..... A008578      1 together with the prime numbers 2 ..... A161344      This sequence 3 ..... A161345 4 ..... A161424 5 ..... A161835 6 ..... A162526 7 ..... A162527 8 ..... A162528 9 ..... A162529 10 .... A162530 11 .... A162531 12 .... A162532 ... And so on. (End) The numbers k whose largest divisor <= sqrt(k) is j are exactly those numbers j*m where m is either a prime >= k or one of the numbers in row j of A163925. - Franklin T. Adams-Watters, Aug 06 2009 See also A163280, the main entry for this sequence. - Omar E. Pol, Oct 24 2009 Also A100484 UNION 8. - Omar E. Pol, Nov 29 2012 (after Seidov and Hasler) LINKS Omar E. Pol, Illustration: Divisors and pi(x) Omar E. Pol, Illustration of initial terms FORMULA Equals 2*A000040 union {8}. - M. F. Hasler, Nov 27 2012 a(n) = 2*A046022(n+1) = 2*A175787(n). - Omar E. Pol, Nov 27 2012 MAPLE isA := proc(n, s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161344 := proc(n) for s from 3 to n do if isA(n, s) then RETURN(false); fi; od: isA(n, 2) ; end: for n from 1 to 3000 do if isA161344(n) then printf("%d, ", n) ; fi; od; # R. J. Mathar, Jun 24 2009 MATHEMATICA a[n_] := If[n <= 3, 2n+2, 2*Prime[n-1]]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Nov 26 2012, after Zak Seidov *) PROG (PARI) a(n)=if(n>3, prime(n-1), n+1)*2 \\ M. F. Hasler, Nov 27 2012 CROSSREFS Cf. A000005, A018253, A160811, A160812, A161205, A161346, A033676, A008578, A161345, A161424, A161835, A162526, A162527, A162528, A162529, A162530, A162531, A162532, A163925. Second column of array in A163280. Also, second row of array in A163990. Sequence in context: A103800 A022449 A088686 * A127792 A288814 A062711 Adjacent sequences:  A161341 A161342 A161343 * A161345 A161346 A161347 KEYWORD easy,nonn AUTHOR Omar E. Pol, Jun 20 2009 EXTENSIONS More terms from R. J. Mathar, Jun 24 2009 Definition added by R. J. Mathar, Jun 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 09:36 EDT 2021. Contains 346385 sequences. (Running on oeis4.)