

A161342


Number of "ON" cubic cells at nth stage in simple 3dimensional cellular automaton: a(n) = A160428(n)/8.


7



0, 1, 8, 15, 64, 71, 120, 169, 512, 519, 568, 617, 960, 1009, 1352, 1695, 4096, 4103, 4152, 4201, 4544, 4593, 4936, 5279, 7680, 7729, 8072, 8415, 10816, 11159, 13560, 15961, 32768, 32775, 32824, 32873
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

First differences are in A161343.  Omar E. Pol, May 03 2015
From Gary W. Adamson, Aug 30 2016: (Start)
Let M =
_1, 0, 0, 0, 0,...
_8, 0, 0, 0, 0,...
_7, 1, 0, 0, 0,...
_0, 8, 0, 0, 0,...
_0, 7, 1, 0, 0,...
_0, 0, 8, 0, 0,...
_0, 0, 7, 1, 0,...
...
Then M^k converges to a single nonzero column giving the sequence.
The sequence with offset 1 divided by its aerated variant is (1, 8, 7, 0, 0, 0,...). (End)


LINKS

Table of n, a(n) for n=0..35.
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Index entries for sequences related to cellular automata


FORMULA

From Nathaniel Johnston, Nov 13 2010: (Start)
a(n) = Sum_{k=0..n1} 7^A000120(k).
a(n) = 1 + 7 * Sum_{k=1..n1} A151785(k), for n >= 1.
a(2^n) = 2^{3n}.
(End)


CROSSREFS

Cf. A160410, A160428, A161343, A006046, A130665, A116520, A130667, A116522, A116526, A116525.
Sequence in context: A167340 A037377 A166704 * A048732 A185038 A193490
Adjacent sequences: A161339 A161340 A161341 * A161343 A161344 A161345


KEYWORD

nonn


AUTHOR

Omar E. Pol, Jun 14 2009


EXTENSIONS

More terms from Nathaniel Johnston, Nov 13 2010


STATUS

approved



