OFFSET
0,3
COMMENTS
Equivalently, a(n) = r*a(ceiling(n/2)) + s*a(floor(n/2)), a(0)=0, a(1)=1, for (r,s) = (1,4). - N. J. A. Sloane, Feb 16 2016
A 5-divide version of A084230.
Zero together with the partial sums of A102376. - Omar E. Pol, May 05 2010
Also, total number of cubic ON cells after n generations in a three-dimensional cellular automaton in which A102376(n-1) gives the number of cubic ON cells in the n-th level of the structure starting from the top. An ON cell remains ON forever. The structure looks like an irregular stepped pyramid, with n >= 1. - Omar E. Pol, Feb 13 2015
From Gary W. Adamson, Aug 27 2016: (Start)
The formula of Mar 26 2010 is equivalent to lim_{k->infinity} M^k of the following production matrix M:
1, 0, 0, 0, 0, 0, ...
5, 0, 0, 0, 0, 0, ...
4, 1, 0, 0, 0, 0, ...
0, 5, 0, 0, 0, 0, ...
0, 4, 1, 0, 0, 0, ...
0, 0, 5, 0, 0, 0, ...
0, 0, 4, 1, 0, 0, ...
0, 0, 0, 5, 0, 0, ...
...
The sequence with offset 1 divided by its aerated variant is (1, 5, 4, 0, 0, 0, ...). (End)
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
K.-N. Chang and S.-C. Tsai, Exact solution of a minimal recurrence, Inform. Process. Lett. 75 (2000), 61-64.
H. Harborth, Number of Odd Binomial Coefficients, Proc. Amer. Math. Soc. 62, 19-22, 1977.
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 27, 32.
D. E. Knuth, Problem 11320, The American Mathematical Monthly, Vol. 114, No. 9 (Nov., 2007), p. 835.
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Eric Weisstein's World of Mathematics, Stolarsky-Harborth Constant
FORMULA
a(0) = 1, a(1) = 1; thereafter a(2n) = 5a(n) and a(2n+1) = 4a(n) + a(n+1).
Let r(x) = (1 + 5x + 4x^2). Then (1 + 5x + 9x^2 + 25x^3 + ...) = r(x) * r(x^2) * r(x^4) * r(x^8) * ... . - Gary W. Adamson, Mar 26 2010
a(n) = Sum_{k=0..n-1} 4^wt(k), where wt = A000120. - Mike Warburton, Mar 14 2019
a(n) = Sum_{k=0..floor(log_2(n))} 4^k*A360189(n-1,k). - Alois P. Heinz, Mar 06 2023
MAPLE
a:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 0 then 5*a(n/2) else 4*a((n-1)/2)+a((n+1)/2) fi end: seq(a(n), n=0..52);
MATHEMATICA
b[0] := 0 b[1] := 1 b[n_?EvenQ] := b[n] = 5*b[n/2] b[n_?OddQ] := b[n] = 4*b[(n - 1)/2] + b[(n + 1)/2] a = Table[b[n], {n, 1, 25}]
PROG
(Haskell)
import Data.List (transpose)
a116520 n = a116520_list !! n
a116520_list = 0 : zs where
zs = 1 : (concat $ transpose
[zipWith (+) vs zs, zipWith (+) vs $ tail zs])
where vs = map (* 4) zs
-- Reinhard Zumkeller, Apr 18 2012
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Roger L. Bagula, Mar 15 2006
EXTENSIONS
Edited by N. J. A. Sloane, Apr 16 2006, Jul 02 2008
STATUS
approved