login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116517
Decimal expansion of a Rivoal-Fischler constant.
1
8, 6, 9, 8, 4, 8, 2, 3, 0, 5, 3, 2, 6, 5, 3, 4, 9, 4, 1, 2, 7, 4, 5, 2, 8, 0, 1, 6, 0, 3, 5, 8, 2, 2, 2, 6, 5, 3, 7, 6, 6, 0, 7, 3, 0, 5, 5, 8, 2, 0, 3, 6, 9, 5, 9, 0, 1, 5, 0, 1, 6, 3, 2, 3, 1, 0, 6, 5, 9, 6, 5, 3, 0, 9, 2, 6, 3, 1, 4, 1, 3, 8, 8, 0, 5, 0, 0, 6, 4, 5, 5, 7, 5, 3, 6, 4, 2, 9, 7
OFFSET
0,1
COMMENTS
See Prop. 5 on p. 11 in the preprint, or Prop. 4.7 on p. 12 in the published version. - Petros Hadjicostas, Jun 09 2020
LINKS
Stéphane Fischler and Tanguy Rivoal, Un exposant de densité en approximation rationnelle, preprint, 2006.
Stéphane Fischler and Tanguy Rivoal, Un exposant de densité en approximation rationnelle, preprint, 2006.
Stéphane Fischler and Tanguy Rivoal, Un exposant de densité en approximation rationnelle, Int. Math. Res. Notices, Vol. 2006 (2006), Article ID 95418, 48 pp.
Tanguy Rivoal, Homepage.
FORMULA
2*exp(-Pi^2/12/log(K)) = 0.8698482305... where K is the Khintchine constant (A002210).
MATHEMATICA
RealDigits[ N[ 2*Exp[ -Pi^2/12/Log[Khinchin] ], 100]][[1]] (* Jean-François Alcover, Oct 30 2012 *)
CROSSREFS
Cf. A002210.
Sequence in context: A160056 A155680 A249103 * A302517 A326285 A104668
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Mar 24 2006
EXTENSIONS
Name edited by Petros Hadjicostas, Jun 09 2020
STATUS
approved