login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A160428
Number of ON cells at n-th stage of three-dimensional version of the cellular automaton A160410, using cubes.
7
0, 8, 64, 120, 512, 568, 960, 1352, 4096, 4152, 4544, 4936, 7680, 8072, 10816, 13560, 32768, 32824, 33216, 33608, 36352, 36744, 39488, 42232, 61440, 61832, 64576, 67320, 86528, 89272, 108480, 127688, 262144, 262200, 262592, 262984, 265728, 266120, 268864, 271608
OFFSET
0,2
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 33.
FORMULA
a(n) = 8 * Sum_{k=0..n-1} 7^A000120(k)
a(n) = 8 + 56 * Sum_{k=1..n-1} A151785(k) for n >= 1
MATHEMATICA
a[n_] := 8*Sum[7^DigitCount[k, 2, 1], {k, 0, n - 1}]; Array[a, 40, 0] (* Michael De Vlieger, Nov 01 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 01 2009
EXTENSIONS
Formulas and more terms from Nathaniel Johnston, Nov 13 2010
More terms from Michael De Vlieger, Nov 01 2022
STATUS
approved