login
A167340
Totally multiplicative sequence with a(p) = p*(p+2) = p^2+2p for prime p.
1
1, 8, 15, 64, 35, 120, 63, 512, 225, 280, 143, 960, 195, 504, 525, 4096, 323, 1800, 399, 2240, 945, 1144, 575, 7680, 1225, 1560, 3375, 4032, 899, 4200, 1023, 32768, 2145, 2584, 2205, 14400, 1443, 3192, 2925, 17920, 1763, 7560, 1935, 9152, 7875, 4600
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (p*(p+2))^e. If n = Product p(k)^e(k) then a(n) = Product (p(k)*(p(k)+2))^e(k). a(n) = n * A166590(n).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2 + 2*p - 1)) = 1.316691699195895375836915424544566393355705508235453271181975628362968836... - Vaclav Kotesovec, Sep 20 2020
MATHEMATICA
a[1] = 1; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]] + 2)^fi[[All, 2]])); Table[a[n]*n, {n, 1, 100}] (* G. C. Greubel, Jun 10 2016 *)
CROSSREFS
Sequence in context: A151792 A243295 A118526 * A037377 A166704 A161342
KEYWORD
nonn,mult
AUTHOR
Jaroslav Krizek, Nov 01 2009
STATUS
approved