OFFSET
1,1
COMMENTS
Define a sieve operation with parameter s that eliminates integers of the form s^2+s*i (i >= 0) from the set A000027 of natural numbers. The sequence lists those natural numbers that are eliminated by the sieve s=3 and cannot be eliminated by any sieve s >= 4. - R. J. Mathar, Jun 24 2009
See A161344 for more information. - Omar E. Pol, Jul 05 2009
See also the array in A163280, the main entry for this sequence. - Omar E. Pol, Oct 24 2009
Union of {12, 18, 27} and all the numbers of the form 3*p, where p is an odd prime. - Amiram Eldar, Apr 17 2024
LINKS
Omar E. Pol, Illustration: Divisors and pi(x).
Omar E. Pol, Illustration for A008578, A161344, A161345 and A161424. [From Omar E. Pol, Oct 24 2009]
FORMULA
Numbers k such that A033676(k)=3. - Omar E. Pol, Jul 05 2009
MAPLE
isA := proc(n, s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161345 := proc(n) for s from 4 to n do if isA(n, s) then RETURN(false); fi; od: isA(n, 3) ; end: for n from 1 to 3000 do if isA161345(n) then printf("%d, ", n) ; fi; od; # R. J. Mathar, Jun 24 2009
MATHEMATICA
md3Q[n_]:=Max[Select[Divisors[n], #<=Sqrt[n]&]]==3; Select[Range[800], md3Q] (* Harvey P. Dale, Aug 12 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Omar E. Pol, Jun 20 2009
EXTENSIONS
Terms beyond a(10) from R. J. Mathar, Jun 24 2009
Definition added by R. J. Mathar, Jun 28 2009
STATUS
approved