login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120167
a(n) = 9 + floor((3 + Sum_{j=1..n-1} a(j))/4).
3
9, 12, 15, 18, 23, 29, 36, 45, 56, 70, 88, 110, 137, 171, 214, 268, 335, 418, 523, 654, 817, 1021, 1277, 1596, 1995, 2494, 3117, 3896, 4870, 6088, 7610, 9512, 11890, 14863, 18579, 23223, 29029, 36286, 45358, 56697
OFFSET
1,1
LINKS
MATHEMATICA
nxt[{t_, a_}]:=Module[{c=Floor[(39+t)/4]}, {t+c, c}]; NestList[nxt, {9, 9}, 40][[All, 2]] (* Harvey P. Dale, Apr 24 2019 *)
PROG
(Magma)
function f(n, a, b)
t:=0;
for k in [1..n-1] do
t+:= a+Floor((b+t)/4);
end for;
return t;
end function;
g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >;
A120167:= func< n | g(n, 9, 3) >;
[A120167(n): n in [1..60]]; // G. C. Greubel, Sep 09 2023
(SageMath)
@CachedFunction
def f(n, p, q): return p + (q +sum(f(k, p, q) for k in range(1, n)))//4
def A120167(n): return f(n, 9, 3)
[A120167(n) for n in range(1, 61)] # G. C. Greubel, Sep 09 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Graeme McRae, Jun 10 2006
STATUS
approved