login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263674
Double interprimes: a(n) = (q+r)/2 = (p+s)/2 with p<q<r<s consecutive primes.
4
9, 12, 15, 18, 30, 42, 60, 81, 102, 105, 108, 120, 144, 165, 186, 195, 228, 260, 270, 312, 363, 381, 399, 420, 426, 441, 462, 489, 495, 552, 570, 582, 600, 696, 705, 714, 765, 816, 825, 858, 870, 882, 897, 924, 987, 1026, 1050, 1056, 1092, 1113, 1167, 1230
OFFSET
1,1
COMMENTS
Values of p (lesser of consecutive primes) are in the sequence A022885.
LINKS
Eric Weisstein's World of Mathematics, Interprime
EXAMPLE
600 is in this sequence because 593, 599, 601 and 607 are consecutive primes, and 600 = (599+601)/2 = (593+607)/2.
MATHEMATICA
(Prime@ # + Prime[# + 3])/2 & /@ Select[Range@ 240, (First@ # + Last@ #)/2 == (#[[2]] + #[[3]])/2 &@ Prime@ Range[#, # + 3] & (* Michael De Vlieger, Nov 18 2015 *)
Mean/@Select[Partition[Prime[Range[300]], 4, 1], (#[[2]]+#[[3]])/2==(#[[1]]+#[[4]])/2&] (* Harvey P. Dale, Aug 18 2024 *)
PROG
(PARI) {forprime(q=3, 2000, p=precprime(q-1); r=nextprime(q+1); s=nextprime(r+1); m=(q+r)/2; if(m==(p+s)/2, print1(m, ", ")))}
KEYWORD
nonn
AUTHOR
Antonio Roldán, Oct 23 2015
STATUS
approved