login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175787
Primes together with 4.
6
2, 3, 4, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
OFFSET
1,1
COMMENTS
sopf(n) is the sum of the distinct primes dividing n (A008472). Because sopf(n) = n if n is prime, this sequence is numbers n such that n^sopf(n) = sopf(n)^n.
Numbers n whose sum of prime factors is n. - Arkadiusz Wesolowski, Jan 17 2012
Numbers n such that 2n has exactly four divisors. - Wesley Ivan Hurt, Jul 01 2013
Numbers n such that n^2 does not divide n!. - Charles R Greathouse IV, Nov 04 2013
FORMULA
a(n) = A046022(n+1). - Omar E. Pol, Nov 27 2012
MAPLE
with(numtheory): digits:=200:nn:=200:for a from 1 to nn do: t1:=ifactors(a)[2]:t2:=sum(t1[i][1], i=1..nops(t1)) :if a^t2=t2^a then printf(`%d, `, a):else fi:od:
MATHEMATICA
Insert[Prime[Range[60]], 4, 3] (* Harvey P. Dale, Jan 26 2024 *)
PROG
(PARI) a(n)=if(n>3, prime(n-1), n+1) \\ Charles R Greathouse IV, Aug 26 2011
CROSSREFS
Sequence in context: A211781 A348283 A046022 * A345899 A073019 A174291
KEYWORD
nonn,easy
AUTHOR
Michel Lagneau, Sep 04 2010
EXTENSIONS
Switched comment and name. Charles R Greathouse IV, Nov 04 2013
STATUS
approved