Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jan 26 2024 13:31:16
%S 2,3,4,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,
%T 89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,
%U 179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277
%N Primes together with 4.
%C sopf(n) is the sum of the distinct primes dividing n (A008472). Because sopf(n) = n if n is prime, this sequence is numbers n such that n^sopf(n) = sopf(n)^n.
%C Numbers n whose sum of prime factors is n. - _Arkadiusz Wesolowski_, Jan 17 2012
%C Numbers n such that 2n has exactly four divisors. - _Wesley Ivan Hurt_, Jul 01 2013
%C Numbers n such that n^2 does not divide n!. - _Charles R Greathouse IV_, Nov 04 2013
%F a(n) = A046022(n+1). - _Omar E. Pol_, Nov 27 2012
%p with(numtheory): digits:=200:nn:=200:for a from 1 to nn do: t1:=ifactors(a)[2]:t2:=sum(t1[i][1],i=1..nops(t1)) :if a^t2=t2^a then printf(`%d, `, a):else fi:od:
%t Insert[Prime[Range[60]],4,3] (* _Harvey P. Dale_, Jan 26 2024 *)
%o (PARI) a(n)=if(n>3,prime(n-1),n+1) \\ _Charles R Greathouse IV_, Aug 26 2011
%Y Cf. A008472, A046022.
%K nonn,easy
%O 1,1
%A _Michel Lagneau_, Sep 04 2010
%E Switched comment and name. _Charles R Greathouse IV_, Nov 04 2013