login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175788
Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of n that do not contain k as a part.
9
1, 1, 1, 1, 0, 2, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 2, 2, 2, 7, 1, 1, 2, 2, 3, 2, 11, 1, 1, 2, 3, 4, 4, 4, 15, 1, 1, 2, 3, 4, 5, 6, 4, 22, 1, 1, 2, 3, 5, 6, 8, 8, 7, 30, 1, 1, 2, 3, 5, 6, 9, 10, 11, 8, 42, 1, 1, 2, 3, 5, 7, 10, 12, 15, 15, 12, 56
OFFSET
0,6
LINKS
FORMULA
G.f. of column 0: Product_{m>0} 1/(1-x^m).
G.f. of column k>0: (1-x^k) * Product_{m>0} 1/(1-x^m).
A(n,0) = A000041(n); A(n,k) = A000041(n) - A000041(n-k) for k>0.
For fixed k>0, A(n,k) ~ k*Pi * exp(sqrt(2*n/3)*Pi) / (12*sqrt(2)*n^(3/2)) * (1 - (3*sqrt(3/2)/Pi + Pi/(24*sqrt(6)) + k*Pi/(2*sqrt(6)))/sqrt(n) + (1/8 + 3*k/2 + 9/(2*Pi^2) + Pi^2/6912 + k*Pi^2/288 + k^2*Pi^2/36)/n). - Vaclav Kotesovec, Nov 04 2016
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 0, 1, 1, 1, 1, ...
2, 1, 1, 2, 2, 2, ...
3, 1, 2, 2, 3, 3, ...
5, 2, 3, 4, 4, 5, ...
7, 2, 4, 5, 6, 6, ...
MAPLE
A41:= n-> `if`(n<0, 0, combinat[numbpart](n)):
A:= (n, k)-> A41(n) -`if`(k>0, A41(n-k), 0):
seq(seq(A(n, d-n), n=0..d), d=0..11);
MATHEMATICA
A41[n_] := If[n<0, 0, PartitionsP[n]]; A[n_, k_] := A41[n]-If[k>0, A41[n-k], 0]; Table[A[n, d-n], {d, 0, 11}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)
CROSSREFS
Rows n=0-1 give: A000012, A060576.
Main diagonal gives A000065 (for n>0).
Sequence in context: A124944 A094392 A111946 * A237513 A137844 A263845
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 04 2010
STATUS
approved