login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161151
a(n) = (largest odd divisor of (n+1))*(largest power of 2 dividing n).
4
1, 6, 1, 20, 3, 14, 1, 72, 5, 22, 3, 52, 7, 30, 1, 272, 9, 38, 5, 84, 11, 46, 3, 200, 13, 54, 7, 116, 15, 62, 1, 1056, 17, 70, 9, 148, 19, 78, 5, 328, 21, 86, 11, 180, 23, 94, 3, 784, 25, 102, 13, 212, 27, 110, 7, 456, 29, 118, 15, 244, 31, 126, 1, 4160, 33, 134, 17, 276, 35
OFFSET
1,2
LINKS
FORMULA
a(n)*A161150(n) = n*(n+1) = A002378(n).
a(n) = A000265(n+1)*A006519(n).
a(2^k*(2*n-1) - 1) = 2*n-1 and a(2^k*(2*n-1)) = 2^k*(1 + 2^k*(2*n-1)), n >= 1 and k >= 1. - Johannes W. Meijer, Oct 31 2012
1 <= a(n) <= n^2 + n; both bounds are sharp. - Charles R Greathouse IV, Oct 31 2012
a(2*n-1) = A000265(n) and a(2*n) = 2*A182241(n) - Johannes W. Meijer, Dec 24 2012
MAPLE
nmax:=69: for n from 1 to nmax do for k from 1 to floor(log[2](nmax)) do a(2^k*(2*n-1) - 1) := 2*n-1; a(2^k*(2*n-1)) := 2^k*(1 + 2^k*(2*n-1)) od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Oct 31 2012
MATHEMATICA
Array[SelectFirst[Reverse@ Divisors[# + 1], OddQ]*2^IntegerExponent[#, 2] &, 69] (* Michael De Vlieger, Nov 02 2017 *)
PROG
(PARI) a(n)=(n+1)>>valuation(n+1, 2)<<valuation(n, 2) \\ Charles R Greathouse IV, Oct 31 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Leroy Quet, Jun 03 2009
EXTENSIONS
Extended by Ray Chandler, Jun 11 2009
STATUS
approved