login
A096130
Triangle read by rows: T(n,k) = binomial(k*n,n), 1 <= k <= n.
4
1, 1, 6, 1, 20, 84, 1, 70, 495, 1820, 1, 252, 3003, 15504, 53130, 1, 924, 18564, 134596, 593775, 1947792, 1, 3432, 116280, 1184040, 6724520, 26978328, 85900584, 1, 12870, 735471, 10518300, 76904685, 377348994, 1420494075, 4426165368, 1, 48620, 4686825, 94143280, 886163135, 5317936260, 23667689815, 85113005120, 260887834350
OFFSET
1,3
LINKS
FORMULA
T(n, 1) = 1;
T(n, 2) = A000984(n) for n > 1;
T(n, 3) = A005809(n) for n > 2;
T(n, 4) = A005810(n) for n > 3;
T(n, n) = A014062(n).
EXAMPLE
Triangle begins:
1;
1, 6;
1, 20, 84;
1, 70, 495, 1820;
1, 252, 3003, 15504, 53130;
...
MAPLE
a:=(n, k)->binomial(k*n, n): seq(seq(a(n, k), k=1..n), n=1..10); # Muniru A Asiru, Aug 12 2018
PROG
(PARI) tabl(nrows) = {for (n=1, nrows, for (k=1, n, print1(binomial(k*n, n), ", "); ); print(); ); } \\ Michel Marcus, May 14 2013
(GAP) Flat(List([1..10], n->List([1..n], k->Binomial(k*n, n)))); # Muniru A Asiru, Aug 12 2018
CROSSREFS
Row-sums give A096131. The leading diagonal is A014062. Cf. A096131.
Cf. A007318.
Sequence in context: A161151 A146383 A264313 * A120666 A050300 A185678
KEYWORD
nonn,tabl
AUTHOR
Amarnath Murthy, Jul 04 2004
EXTENSIONS
Corrected and extended by Reinhard Zumkeller, Jan 09 2005
STATUS
approved