OFFSET
1,4
FORMULA
EXAMPLE
a(n=12)=5 counts these 5 partitions of 12: 1^2+1^2+..+1^2 = 1^2+1^2+...+1^2+2^2 = 1^2+1^2+..+1^2+2^2+2^2 = 1^2+1^2+1^2+3^2=2^2+2^2+2^2. Partitions with the divisors 4, 6 or 12 do not contribute to the count because 4^2, 6^2 and 12^2 are larger than n.
MAPLE
a := proc(n) coeftayl(1/mul(1-x^(d^2), d=numtheory[divisors](n)), x=0, n) ; end:
MATHEMATICA
a[n_] := SeriesCoefficient[1/Product[1-x^(d^2), {d, Divisors[n]}], {x, 0, n}];
Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Apr 04 2024, after Maple code *)
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jun 03 2009
STATUS
approved