The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161149 a(n) = (2*n)!*(2*n+1)!/n! = n!*A000909(n), n=0,1... 0
 1, 12, 1440, 604800, 609638400, 1207084032000, 4142712397824000, 22619209692119040000, 184572751087691366400000, 2146211949647675208499200000, 34253542716376896327647232000000, 727956289808441800755158974464000000, 20091593598712993700842387695206400000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Integral representation as n-th moment of a positive function W(x) expressed in terms of Meijer's G-function on the positive axis, in Maple notation: a(n)= int(x^n*W(x),x=0..infinity)= int(x^n*(1/2)*MeijerG([[], []], [[1, 1/2, 0], []], (1/16)*x) /(sqrt(x)*Pi),x=0..infinity), n=0,1... . Explicit form of the function W(x) is W(x)=1/2*(-1/2*Pi*x^(1/2)*hypergeom([],[1/2, 3/2],-1/16*x)+Pi^(1/2)-1/16*Pi^(1/2)*x*sum((-1)^(2*j)* (-Psi(3/2+j)+Pi*tan(Pi*j)-Psi(2+j)-Psi(1+j)-4*log(2)+log(x))*2^(-4*j)* (x^j)*sec(Pi*j)*2^(2*j)/(1/2+j)/GAMMA(1+2*j)/GAMMA(2+j), j = 0..infinity))/(x^(1/2)*Pi); This is the solution of the Stieltjes moment problem with the moments a(n). This solution may not be unique. LINKS FORMULA Hypergeometric generating function: sum(a(n)*x^n/(n!)^4, n=0..infinity)= -2*EllipticE(4*sqrt(x))/((16*x-1)*Pi). PROG (MAGMA) [Factorial(2*n)*Factorial(2*n+1)/Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jul 06 2015 CROSSREFS Cf. A000909, A000165. Sequence in context: A260448 A271514 A181856 * A160490 A276905 A015096 Adjacent sequences:  A161146 A161147 A161148 * A161150 A161151 A161152 KEYWORD nonn AUTHOR Karol A. Penson, Jun 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 26 08:06 EDT 2020. Contains 338027 sequences. (Running on oeis4.)